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Abstract. In this paper we show that any proper positively homogeneous function annihilating at
the origin is a pointwise minimum of sublinear functions (MSL function). By means of a
generalized Gordan’s theorem for inequality systems with MSL functions, we present an
application to a locally Lipschitz extremum problem without constraint qualifications.
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1. Introduction and dual characterization

Glover et al. presented in [3] a generalized Farkas lemma for inequality systems
with pointwise minimum of sublinear functions (MSL functions). They also stated
that such a class of functions is very wide. The aim of this paper is to show that the
class of the MSL functions is equivalent to the class of the proper positively
homogeneous functions which are zero at the origin. This, together with a
generalized Gordan’s theorem for MSL functions, paves the way to deriving a
necessary optimality condition in dual form for a locally Lipschitz extremum
problem without any constraint qualification.

We briefly give the notation used below. X is a real normed vector space with the
norm i ? i, X* is its topological dual space endowed with the weak* topology and
k? , ?l denotes the canonical pairing between X* and X. We denote by S the unit
sphere; for a set A, we denote the closure, the interior, the convex hull, and the
conical hull of A by cl A, int A, conv A, and cone A, respectively. The recession
cone of A is

1 :0 A 5 hx [ X : A 1 x # Aj .

The indicator function associated to A is defined by

0 , if x [ A ,
:d(x, A) 5 H1` , if x [⁄ A

while, if A is a subset of X*, the support function associated to A is

:s(x, A) 5 sup kx*, xl .
x*[A
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The polar cone associated to a cone K in X is

:K8 5 hx* [ X* : kx*, xl < 0, for all x [ Kj .

A function p : X → R < h1`j is proper if dom p ± 5, where

:dom p 5 hx [ X : p(x) , 1`j .

If the function p is the support function of a closed convex set A, then its domain is
:called barrier cone of A and it is denoted by barr A 5 dom s(? , A). The function p

is sublinear if it is proper convex and positively homogeneous. If p is lower
semicontinuous then [7] there exists a unique nonempty closed convex subset of X*,
called subdifferential and denoted by ­p(0), such that p(x) 5 s(x, ­p(0)). Lastly, let
« . 0 be fixed; the «-subdifferential of p at x [ dom p is the closed convex set0

:­ p(x ) 5 hx* [ X* : p(x) > p(x ) 1 kx*, x 2 x l 2 «, for all x [ Xj .« 0 0 0

The «-subdifferential of lower semicontinuous sublinear functions at zero coincides
with the subdifferential.

DEFINITION 1. A function p : X → R < h1`j is said to be pointwise minimum of
sublinear functions (MSL function) if there exist an index set T and a family
h p : t [ T j of lower semicontinuous proper sublinear functions such thatt

p(x) 5min p (x) , for all x [ X .t
t[T

By means of the result in [7] the definition of MSL function is equivalent to the
existence of a family h­( p, t) : t [ T j of nonempty closed convex sets in X* such
that

p(x) 5min s(x, ­( p, t)) , for all x [ X .
t[T

Clearly an MSL function is positively homogeneous and it is zero at the origin. The
concept of MSL function falls under the more general definition of inf-convexity that
was used by Kutateladze and Rubinov [8]. In [1] Crouzeix showed that, if p is a

ncontinuous and quasiconvex positively homogeneous function on R , then p is an
MSL function with the index set T including only two elements. The converse does

:not hold; indeed the function p(x) 5 2uxu defined on R is an MSL function with
respect to T 5 h61j and p (x) 5 6x but it is not quasiconvex. Lastly, in [3] Glover61

et al. showed that the class of MSL functions includes the class of difference
sublinear functions. Now we show that the class of MSL functions is very wide: it is
equivalent to the set of the positively homogeneous functions annihilating at the
origin.

THEOREM 1. Let p : X → R < h1`j be a positively homogeneous function such
that p(0) 5 0; then p is an MSL function.

:Proof. If dom p 5 h0j, then we choose T a singleton and ­p(0) 5 X*; otherwise
:let T 5 S > dom p ± 5 and, for each z [ T, we define
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5­( p, z) (conehzj)8 1 p(z)z*

:where z* 5 z*(z) [ X* is chosen so that kz*, zl 5 1. Then, for each x [ X,

s(x, ­( p, z)) 5 p(z)kz*, xl 1 s(x, (conehzj)8) 5 p(z)kz*, xl 1 d(x, conehzj) ,

where the last equality descends from the relation s(? , K8) 5 d(? , K) which holds
for each closed convex cone K. Thus

min s(x, ­( p, z)) 5min h p(z)kz*, xl 1 d(x, conehzj)j 5 p(x) ,
z[T z[T

and the theorem is proved. h

REMARK 1. Theorem 1 holds also for X a separated locally convex space. Fixed
z [ dom p, consider the function

p (x) : X → R < h1`jz

defined by

tp(z) , if x 5 tz with t > 0 ,
p (x) 5Hz 1` , otherwise .

Then, the function p is lower semicontinuous and sublinear; moreoverz

p(x) 5 min p (x) .z
z[dom p

The representation that we have just given might seem too general, in the sense
that the index set T might appear too big. Actually, the following example shows
that there exist MSL functions such that each index set T has cardinality not less
than that of S > dom p.

2 2:EXAMPLE 1. Let X 5 R and, for each nonzero x [ R , set a the unique elementx

of [0, 2[ such that x 5 ixi(cos(a p), sin(a p)). Consider the following positivelyx x
2homogeneous function p : R → R defined by

0 , if x 5 (0, 0) or a [⁄ Q ,x:p(x) 5 Hixi , if a [ Q .x

Clearly, from Theorem 1, p is MSL and we show that we can not associate the same
subdifferential ­( p, t) to different points x , x [ S with 0 , a , a , 1 and1 2 x x1 2

a , a [⁄ Q. If, by contradiction, there exists ­( p, t) such thatx x1 2

s(x , ­( p, t)) 5 s(x , ­( p, t)) 5 0 ,1 2

we have

s(lx 1 (1 2 l)x , ­( p, t)) 5 0 , for all l [ [0, 1] .1 2

:Since x 5 lx 1 (1 2 l)x ± (0, 0) and f(x ) 5 0, then a [⁄ Q for all a [l 1 2 l x xl l
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[a , a ] which contradicts the density of Q. Therefore the cardinality of everyx x1 2

index set T is not less than that of S.
We conclude proving that for a Lipschitz positively homogeneous function p, the

functions p may be chosen to be continuous or, equivalently, the sets ­( p, t) may bet

chosen compact.

THEOREM 2. Let p : X → R be a Lipschitz positively homogeneous function with
constant k. Then there exist an index set T and a family h p : t [ T j of continuoust

proper sublinear functions such that

p(x) 5min p (x) , for all x [ X .t
t[T

Proof. Since dom p 5 X, for every z [ S the function p defined in Remark 1 is az

lower semicontinuous proper sublinear function. Consider the function
zp (x) 5 infhkix i 1 p (x ) : x 1 x 5 xj1 z 2 1 2

¯ ¯ ¯5 infhkix 2 x i 1 p (x ) : x [ Xjz

5 infhkix 2 tzi 1 tp(z) : t > 0j .
zSince p is the infimal convolution of two proper sublinear functions with one of

them continuous, then it is a continuous sublinear function. From the Lipschitz
assumption, we have

p(x) < kix 2 tzi 1 p(tz) , for all t > 0 and x [ X

and therefore
zp (x) > p(x) , for all x [ X .

Moreover, if x [ S, choosing z 5 x and t 5 1, we have

xp (x) 5 infhkix 2 txi 1 tp(x) : t > 0j < p(x) ,

which implies
x zp(x) 5 p (x) 5min p (x) , for all x [ S .

z[S

Therefore, for each x [ X\h0j,
2121 ixi x 21 z 21 zp(x) 5 ixi p(ixi x) 5 ixi p (ixi x) 5 ixi min p (ixi x) 5min p (x)

z[S z[S

which proves the statement. h

2. Application to nonsmooth programming problem

Recently some solvability results involving inf-convex functions were presented in
[4] and, more specifically, a generalization of the Farkas lemma for MSL systems
was proved in [3]. The aim of this section is to state a generalization of the Gordan’s
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theorem [5] and to apply it to a locally Lipschitz extremum problem. In what
:follows we assume that I 5 h1, . . . , mj is a finite index set, and p : X → R < h1`j,i

:i [ I 5 h0j < I, are MSL functions such that there exist families h­( p , t ) : t [ T j,0 i i i i

i [ I , of nonempty closed convex subsets of X* with0

:p (x) 5 min s(x, ­( p , t )) , for all i [ I . (1)i i i 0
t [Ti i

THEOREM 3. Assume that for each i [ I , p : X → R < h1`j is an MSL function0 i

with (1) being satisfied; then the following statements are equivalent:
(i) it is impossible the system

p (x) , 0 , i [ I ;i 0

(ii) for each (t , t , . . . , t ) [ p T ,0 1 m i[I i0

0 [ cl conv < ­( p , t ) .i i
i[I0

Moreover, if barr ­( p , t ) are closed statement (i) is equivalent to the following one:i i

(iii) for each (t , t , . . . , t ) [ p T , there exist l > 0, i [ I , not all zero,0 1 m i[I i i 00

such that

10 [ cl O l ­( p , t ) 1 O 0 ­( p , t ) .i i i i iS D
i[I ,l .0 i[I ,l 500 i 0 i

Proof. Statement (i) is equivalent to the impossibility of the system

s(x, ­( p , t )) , 0 , i [ I (2)i i 0

:for each fixed t 5 (t , t , . . . , t ) [ p T . Define0 1 m i[I i0

:P (x) 5 max s(x, ­( p , t )) 5 s(x, cl conv < ­( p , t )) ;t i i i i
i[I i[I0 0

therefore the impossibility of (2) is equivalent to affirm that P assumes globalt

minimum at the origin and thus

0 [ ­P (0) 5 cl conv < ­( p , t )t i i
i[I0

which is statement (ii). Let us consider (i) and (iii). The impossibility of (2) is also
11mequivalent to the disjunction between the interior of the negative orthant R and2

the convex cone
11m5# hy [ R : there exists x [ X s.t. s(x, ­( p , t )) < y , for all i [ I j .i i i 0

11mBy the separation theorem, there exists a nonzero vector l [ R such that

O l z < 0 < O l s(x, ­( p , t )) ,i i i i i
i[I i[I0 0

11mfor all z [ int R and x [> barr ­( p , t ) .2 i i
i[I0
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From the first inequality we deduce l > 0, from the second inequality we obtaini

that the function

:F(x) 5 O l s(x, ­( p , t )) 1 O d(x, barr ­( p , t ))i i i i i
i[I ,l .0 i[I ,l 500 i 0 i

assumes global minimum at the origin and then

0 [ ­ O l s(? , ­( p , t )) 1 O d(? , barr ­( p , t )) (0) . (3)i i i i iS D
i[I ,l .0 i[I ,l 500 i 0 i

The closure of the sets barr ­( p , t ) implies that F is sum of lower semicontinuousi i

functions and thus we may apply to (3) the formula derived in [6, Theorem 2.1],
deriving

0 [> cl O ­ s(0, l ­( p , t )) O ­ d(0, barr ­( p , t )) ;« i i i « i iS D«.0 i[I ,l .0 i[I ,l 500 i 0 i

therefore

0 [> cl O l ­( p , t )) O (barr ­( p , t ))8 .i i i i iS D«.0 i[I ,l .0 i[I ,l 500 i 0 i

1Since « does not appear into the intersection, and (barr ­( p , t ))8 5 0 ­( p , t ), wei i i i

achieve the thesis. h

Let us apply Theorem 3 to the inequality constrained extremum problem

:minh f (x) : f (x) < 0, i [ I 5 h1, . . . , mjj (4)0 i

:where f : X → R are locally Lipschitz functions, i [ I 5 h0j < I. We recall that thei 0

upper and lower Dini directional derivatives of a function w : X → R at x [ X in the
direction v [ X are defined, respectively, by

w(x 1 tv) 2 w(x)
: ]]]]]D w(x, v) 5 lim sup ,1 t

t↓0

w(x 1 tv) 2 w(x)
: ]]]]]D w(x, v) 5 lim inf .2 tt↓0

¯THEOREM 4. Let x [ X be a local optimal solution for (4), and let

:¯ ¯I(x ) 5 hi [ I : f (x ) 5 0ji

the index set of the active constraints. Then
(i) there exist families

D2 :¯ ¯h­ f (x ) : t [ T j 5 h­(D f (x, ?), t ) : t [ T j ,t 0 0 0 2 0 0 0 00

D1 :¯ ¯ ¯h­ f (x ) : t [ T j 5 h­(D f (x, ?), t ) : t [ T j , for all i [ I(x )t i i i 1 i i i ii

of nonempty compact convex sets of X* such that
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D2¯ ¯D f (x, v) 5 min s(v, ­ f (x )) ,2 0 t 00t [T0 0

D1¯ ¯ ¯D f (x, v) 5min s(v, ­ f (x )) , for all i [ I(x ) .1 i t iit [Ti i

¯(ii) for each t [ p T , there exist l > 0, i [ h0j < I(x ), not all zero, such¯i[h0j<I(x ) i i

that

D D2 1¯ ¯0 [ l ­ f (x ) 1 O l ­ f (x ) .0 t 0 i t i0 i
¯i[I(x )

¯Proof. Since f , i [ h0j < I(x ), are Lipschitz functions then also their Dinii

derivatives are Lipschitz positively homogeneous functions and (i) follows from
¯Theorem 2. Moreover, it is easy to verify that, if x [ X is a local optimal solution

for (4), then the system

¯D f (x, v) , 02 0 (5)H ¯ ¯D f (x, v) , 0 , i [ I(x )1 i

is not consistent. For each t [ p T ,¯i[h0j<I(x ) i

D D2 1¯ ¯barr ­ f (x ) 5 barr ­ f (x ) 5 Xt 0 t i0 i

then, from Theorem 3, the impossibility of the system (5) is equivalent to state that
¯there exist l > 0, i [ h0j < I(x ), not all zero, such thati

D D2 1¯ ¯0 [ cl l ­ f (x ) 1 O l ­ f (x ) .0 t 0 i t iS D0 i
¯i[I(x )

D D2 1¯ ¯Since ­ f (x ) and ­ f (x ) are compact sets we can omit closure proving thet 0 t i0 i

thesis. h

3. Conclusion

In this paper we have presented a dual characterization for a proper positively
homogeneous function p such that p(0) 5 0. Moreover, we have shown that, if p is
furthermore a Lipschitz function, such a characterization may be obtained with
compact convex sets. Lastly, by means of a generalized Gordan’s theorem, we have
developed a necessary optimality condition in dual form for a locally Lipschitz
extremum problem by using Dini derivatives.

A similar approach has been developed in [2]. A family of compact sets E* is
called an upper exhauster of the positively homogeneous function p if

p(x) 5 inf max kx*, xl ; (6)
C*[E* x*[C*

so that the definition of MSL function has been obtained replacing inf with min and
max with sup in (6). Nevertheless, the family of functions which admit a
representation by means of upper exhauster is less wide than the class of MSL
function. It was shown in [2] that any real-valued upper semicontinuous positively
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homogeneous function, defined on a finite dimensional Euclidean space and
vanishing at the origin, can be expressed as an infimum of sublinear continuous
real-valued functions. In [9] this result was extended in uniformly convex Banach
spaces.
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